Low-dimensional and comprehensive color texture description

نویسندگان

  • Susana Álvarez
  • Anna Salvatella
  • María Vanrell
  • Xavier Otazu
چکیده

Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges). A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact color-texture description for texture classification

Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature....

متن کامل

Morphological texture description of grayscale and color images

Texture constitutes one of the fundamental properties of objects, besides color and shape. In several image analysis applications it is often the only exploitable quality of objects. As such, it has been studied, described, segmented, synthesized or in short analyzed, extensively. Among the plethora of texture description methods, mathematical morphology deserves special attention, as it excels...

متن کامل

Color Image Segmentation using Fuzzy Local Texture Patterns

Texture is one of the fundamental image characteristics useful in computer vision tasks such as object recognition and scene analysis. Texture segmentation is one of the image analysis tasks. The prospect of texture segmentation depends on the choice of the texture description method and the segmentation procedure. In this paper, color-texture descriptors are proposed to represent the texture c...

متن کامل

IRIS – Color Texture Indexing and Recognition Toolbox

This paper presents an open-system approach to color texture recognition and retrieval. Several new compact texture descriptors are used in order to achieve a good recognition and retrieval performance. The IRIS system is an easy-to-use, user-friendly Matlab toolbox, which allows the user to browse image databases according to different paradigms. Indexing terms color texture description, color...

متن کامل

A hybrid color texture image classification method based on 2D and semi 3D texture features and extreme learning machine

Color texture classification is an important step in image segmentation and recognition. The color information is especially important in textures of natural scenes. In this paper, we propose a novel approach based on the 2D and semi 3D texture feature coding method (TFCM) for color texture classification. While 2D TFCM features are extracted on gray scale converted color texture images, the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2012